首页 | 本学科首页   官方微博 | 高级检索  
     


IL-32 expression in the airway epithelial cells of patients with Mycobacterium avium complex lung disease
Authors:Bai Xiyuan  Ovrutsky Alida R  Kartalija Marinka  Chmura Kathryn  Kamali Amanda  Honda Jennifer R  Oberley-Deegan Rebecca E  Dinarello Charles A  Crapo James D  Chang Ling-Yi  Chan Edward D
Affiliation:Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO 80220, USA. baix@njhealth.org
Abstract:Lung disease due to Mycobacterium avium complex (MAC) organisms is increasing. A greater understanding of the host immune response to MAC organisms will provide a foundation to develop novel therapies for these recalcitrant infections. IL-32 is a newly described pro-inflammatory cytokine that enhances host immunity against various microbial pathogens. Cytokines that induce IL-32 such as interferon-gamma, IL-18, IL-12 and tumor necrosis factor-alpha are of considerable importance to mycobacterial immunity. We performed immunohistochemistry and morphometric analysis to quantify IL-32 expression in the lungs of 11 patients with MAC lung disease and 10 controls with normal lung tissues. After normalizing for basement membrane length, there was a profound increase in IL-32 expression in the airway epithelial cells of the MAC-infected lungs compared with controls. Following normalization for alveolar surface area, there was a trend toward increased IL-32 expression in type II alveolar cells and alveolar macrophages in the lungs of MAC patients. Human airway epithelial cells (BEAS-2B) infected with M. avium produced IL-32 by a nuclear factor-kappa B-dependent mechanism. In both BEAS-2B cells and human monocyte-derived macrophages, exogenous IL-32γ significantly reduced the growth of intracellular M. avium. This finding was corroborated by an increase in the number of intracellular M. avium recovered from THP-1 monocytes silenced for endogenous IL-32 expression. The anti-mycobacterial effect of IL-32 may be due, in part, to increased apoptosis of infected cells. These findings indicate that IL-32 facilitates host defense against MAC organisms but may also contribute to the airway inflammation associated with MAC pulmonary disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号