首页 | 本学科首页   官方微博 | 高级检索  
检索        


Identification of an ATP-sensitive K+ channel in rat cultured cortical neurons
Authors:Takako Ohno-Shosaku  Chosaburo Yamamoto
Institution:(1) Department of Physiology, Faculty of Medicine, Kanazawa University, Takara-machi, 920 Kanazawa, Japan
Abstract:To determine whether membranes of mammalian central neurons contain an ATP-sensitive K+ (KATP) channel similar to that present in pancreatic beta cells, the patch-clamp technique was applied to cultured neurons prepared from the neonatal rat cerebral cortex and hippocampus. In whole-cell experiments with hippocampal neurons, extracellular application of 0.5 mM diazoxide (a KATP channel activator) elicited a hyperpolarization concomitant with an increase in membrane conductance, whereas application of 0.5 mM tolbutamide (a KATP channel blocker) induced a depolarization with a decrease in conductance. Similar results were obtained with cortical neurons. In outside-out patch experiments with cortical neurons, a K+ channel sensitive to these drugs was found. The channel was completely blocked by 0.5 mM tolbutamide and activated by 0.5 mM diazoxide. The single-channel conductance was 65 pS under symmetrical 145 mM K+ conditions and 24 pS in a physiological K+ gradient. In inside-out patch experiments, this channel was demonstrated to be inhibited by an application of 0.2–1 mM ATP to the cytoplasmic surface of the patch membrane. These results indicate that the membranes of rat cortical neurons contain a KATP channel that is quite similar to that found in pancreatic beta cells. It is also suggested that the same or a similar K+ channel may exist in membranes of hippocampal neurons.
Keywords:Cultured cortical neuron  Cultured hippocampal neuron  ATP-sensitive K+ channel  Patch clamp
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号