首页 | 本学科首页   官方微博 | 高级检索  
     


Neural mechanisms of early postinflammatory dysmotility in rat small intestine
Authors:i.,demedts ,k.,geboes &dagger  ,s.,kindt ,p.,vanden berghe ,a.,andrioli ,j.,janssens &   j.,tack
Affiliation:Center for Gastroenterological Research, Catholic University Leuven, Leuven, Belgium.
Abstract:Although human postinflammatory dysmotility is known, so far animal studies have primarily investigated changes during inflammation. Here, we focused on postinflammatory changes in rat jejunal myenteric plexus and jejunal motility. Evolution of ethanol/2,4,6-tri-nitrobenzene sulphonic acid (TNBS)-induced inflammation was assessed histologically and by measuring myeloperoxidase activity (MPO). Electromyography and immunohistochemistry were performed 1 week after ethanol/TNBS and also after N(G)-nitro-L-arginine methyl ester (L-NAME) administration. Ethanol/TNBS induced a transient inflammation, with normalization of MPO and histological signs of an early phase of recovery after 1 week. The number of cholinergic neurones was not altered, but myenteric neuronal nitric oxide synthase (nNOS)-immunoreactivity was significantly lower in the early phase of recovery after TNBS compared with water (1.8 +/- 0.2 vs 3.5 +/- 0.2 neurones ganglion(-1), P < 0.001). Interdigestive motility was disrupted with a loss of phase 1 quiescence, an increase of migrating myoelectric complex cycle length, a higher number of non-propagated activity fronts and a decrease of adequately propagated phase 3 s after TNBS. Administration of L-NAME resulted in a similar disruption of interdigestive motility patterns. In the early phase of recovery after ethanol/TNBS-induced jejunal inflammation, a loss of motor inhibition occurs due to a decrease of myenteric nNOS activity. These observations may provide a model for early postinflammatory dysmotility syndromes.
Keywords:enteric nervous system    intestinal EMG    intestinal inflammation    nitric oxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号