首页 | 本学科首页   官方微博 | 高级检索  
检索        


Diaphragmatic and external intercostal muscle control during vomiting: behavior of inspiratory bulbospinal neurons
Authors:A D Miller  S Nonaka  S F Lakos  L K Tan
Institution:Rockefeller University, New York, New York 10021.
Abstract:1. The role of dorsal and ventral respiratory group (DRG and VRG) bulbospinal inspiratory (I) neurons in the control of diaphragmatic and external intercostal (inspiratory) muscle activity during vomiting was examined by recording from these neurons during fictive vomiting in decerebrate, paralyzed cats. Fictive vomiting was defined by a characteristic series of bursts of coactivation of phrenic and abdominal muscle nerves, elicited either by electrical stimulation of abdominal vagal afferents or by emetic drugs, which would be expected to produce vomiting if the animals were not paralyzed. 2. Data were recorded from 22 DRG and 29 VRG I neurons that were antidromically activated from the fourth cervical spinal segment (C4). Only 10% (5/51) of these neurons started to fire near the beginning of phrenic discharge during fictive vomiting and thus had the appropriate discharge pattern to contribute to the initial activation of the diaphragm and coactive external intercostal muscles during vomiting. The frequency of occurrence of these Active neurons was not significantly different in the DRG (3/22) and VRG (2/29) (chi 2 test). Most remaining neurons were either totally silent (n = 7) or had only sporadic, infrequent firing (n = 16) (Silent neurons, 23/51 = 45%), or else fired near the end of phrenic discharge during fictive vomiting (End neurons, 21/51 = 41%). Two neurons were categorized as having miscellaneous (Misc) behavior. 3. No differences were found among neurons having different response patterns during fictive vomiting in regard to the following: the manner in which fictive vomiting was elicited: cell location: conduction velocity; and neuronal firing onset, rate, and pattern during respiration.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号