首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of action of the calcium-sensing receptor in human antral gastrin cells
Authors:Buchan A M  Squires P E  Ring M  Meloche R M
Affiliation:Department of Physiology, Faculty of Medicine, 2146 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada. ambuchan@interchange.ubc.ca
Abstract:BACKGROUND AND AIMS: Human G cells express the calcium-sensing receptor and respond to extracellular calcium by releasing gastrin. However, the receptor on G cells is insensitive to serum calcium levels. We investigated whether this is a result of differential regulation of signaling pathways compared with parathyroid or calcitonin cells. METHODS: Gastrin release from primary cultures of human antral epithelial cells enriched for G cells (35%) was measured by radioimmunoassay. G cells were stimulated by increasing extracellular calcium concentration for 1 hour in the presence or absence of antagonists of specific intracellular signaling pathways. Intracellular calcium levels were monitored to evaluate the effect of the antagonists on calcium influx. RESULTS: Inhibition of phospholipase C decreased calcium-stimulated gastrin release, but blockers of adenylate cyclase, phospholipase A(2), or mitogen-activated protein kinase had no effect. Inhibition of protein kinase C, nonselective cation channels, and phosphodiesterase increased basal and calcium-stimulated gastrin release while decreasing calcium influx. These data were consistent with basally active phosphodiesterase. CONCLUSIONS: The calcium-sensing receptor on the G cell activates phospholipase C and opens nonselective cation channels, resulting in an influx of extracellular calcium. Protein kinase C isozymes expressed by the G cells play multiple roles regulating both gastrin secretion and phosphodiesterase activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号