首页 | 本学科首页   官方微博 | 高级检索  
     


Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design
Authors:Michael B. Harbut  Bhumit A. Patel  Bryan K. S. Yeung  Case W. McNamara  A. Taylor Bright  Jaime Ballard  Frantisek Supek  Todd E. Golde  Elizabeth A. Winzeler  Thierry T. Diagana  Doron C. Greenbaum
Abstract:Early secretory and endoplasmic reticulum (ER)-localized proteins that are terminally misfolded or misassembled are degraded by a ubiquitin- and proteasome-mediated process known as ER-associated degradation (ERAD). Protozoan pathogens, including the causative agents of malaria, toxoplasmosis, trypanosomiasis, and leishmaniasis, contain a minimal ERAD network relative to higher eukaryotic cells, and, because of this, we observe that the malaria parasite Plasmodium falciparum is highly sensitive to the inhibition of components of this protein quality control system. Inhibitors that specifically target a putative protease component of ERAD, signal peptide peptidase (SPP), have high selectivity and potency for P. falciparum. By using a variety of methodologies, we validate that SPP inhibitors target P. falciparum SPP in parasites, disrupt the protein’s ability to facilitate degradation of unstable proteins, and inhibit its proteolytic activity. These compounds also show low nanomolar activity against liver-stage malaria parasites and are also equipotent against a panel of pathogenic protozoan parasites. Collectively, these data suggest ER quality control as a vulnerability of protozoan parasites, and that SPP inhibition may represent a suitable transmission blocking antimalarial strategy and potential pan-protozoan drug target.
Keywords:intramembrane proteolysis   small molecule   target validation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号