首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习的抗纤维化中药化合物筛选研究
作者姓名:王曦廷  李彧  张澜  刘梦  李城  杨秋实  杭晓屹  刘祎
作者单位:北京中医药大学中医学院,北京,100029;北京中医药大学中医学院,北京,100029;北京中医药大学中医学院,北京,100029;北京中医药大学中医学院,北京,100029;北京中医药大学中医学院,北京,100029;北京中医药大学中医学院,北京,100029;北京中医药大学中医学院,北京,100029;北京中医药大学中医学院,北京,100029
基金项目:国家自然科学基金面上资助项目
摘    要:目的构建新型抗纤维化中药化合物虚拟筛选预测模型,并对模型的预测性能进行验证。方法通过对比使用随机森林与梯度提升决策树算法,实现化合物分子指纹的降维与特征优化。构建"特征优化—机器学习"的混合模型,将优化的特征作为输入分别送入逻辑回归、人工神经网络机器学习算法进行训练。使用准确率、召回率、F1值对不同组合的模型进行性能评价。根据模型性能结果确定抗纤维化中药化合物虚拟筛选预测模型。随后,对比此模型和分子对接模型对中药化合物的抗纤维化活性预测结果,进一步验证该模型的预测性能。结果随机森林模型准确率0.76,召回率0.75,F1值0.74,曲线下面积(AUC)值0.818;梯度提升决策树模型准确率0.76,召回率0.74,F1值0.72,AUC值0.829;人工神经网络模型准确率0.75,召回率0.75,F1值0.75,AUC值0.802;随机森林+逻辑回归模型准确率0.77,召回率0.76,F1值0.75,AUC值0.840;随机森林+人工神经网络模型准确率0.74,召回率0.84,F1值0.79,AUC值0.850;梯度提升决策树+逻辑回归模型准确率0.80,召回率0.80,F1值0.79,AUC值0.872;梯度提升决策树+人工神经网络模型准确率0.73,召回率0.91,F1值0.81,AUC值0.837。中药化合物姜黄素、甘草酸、羟基红花黄色素A、大黄素、绞股蓝皀苷分子对接活性结果与本模型预测结果一致。结论梯度提升决策树+逻辑回归模型表现较其他模型准确。通过对比该模型与分子对接模型,进一步确认了该模型在中药化合物预测方面的稳定性;且本模型具有高通量筛选的特性,可以弥补分子对接在筛选化合物效率方面的不足,可作为抗纤维化中药化合物虚拟筛选预测的新方法。

关 键 词:器官纤维化  机器学习  分子指纹  中药化合物筛选
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号