首页 | 本学科首页   官方微博 | 高级检索  
     


Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia.
Authors:Kimiyoshi Ozawa  Kenji Hashimoto  Takashi Kishimoto  Eiji Shimizu  Hiroshi Ishikura  Masaomi Iyo
Affiliation:Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan. kimiyosi@faculty.chiba-u.jp
Abstract:BACKGROUND: Maternal viral infection is associated with increased risk for schizophrenia. It is hypothesized that the maternal immune response to viruses may influence fetal brain development and lead to schizophrenia. METHODS: To mimic a viral infection, the synthetic double strand RNA polyriboinosinic-polyribocytidilic acid (poly I:C) was administered into pregnant mice. Behavioral evaluations (thigmotaxis, methamphetamine [MAP]-induced hyperactivity, novel-object recognition test [NORT]), sensorimotor gating (prepulse inhibition [PPI]), and biochemical evaluation of the dopaminergic function of the offspring of phosphate-buffered saline (PBS)-treated dams (PBS-mice) and that of poly I:C-treated dams (poly I:C-mice) were examined. RESULTS: In juveniles, no difference was found between the poly I:C-mice and PBS-mice. However, in adults, the poly I:C-mice exhibited attenuated thigmotaxis, greater response in MAP-induced (2 mg/kg) hyperlocomotion, deficits in PPI, and cognitive impairment in NORT compared with the PBS-mice. Cognitive impairment in the adult poly I:C-mice could be improved by subchronic administration of clozapine (5.0 mg/kg) but not haloperidol (.1 mg/kg). Increased dopamine (DA) turnover and decreased receptor binding of D2-like receptors, but not D1-like receptors, in the striatum were found in adult poly I:C-mice. CONCLUSIONS: Prenatal poly I:C administration causes maturation-dependent increased subcortical DA function and cognitive impairment in the offspring, indicating a neurodevelopmental animal model of schizophrenia.
Keywords:Poly I:C   prenatal immune activation   neurodevelopment   dopamine   cognition   clozapine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号