Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man. |
| |
Authors: | A Tzelepi T Bezerianos I Bodis-Wollner |
| |
Affiliation: | Department of Neurology, State University of New York-Health Science Center at Brooklyn, 11203, USA. |
| |
Abstract: | The scalp recorded transient visual evoked potential (VEP) represents the massed activity of a large number of neurons of the human visual cortex. Animal studies show that intracerebrally-recorded high frequency electrical activity represents binding between neurons participating in a cooperative response. We evaluated the relationship between scalp recorded high frequency activity and transient VEPs elicited by a repetitive (grating) pattern. Stimuli were 1 and 4 cycles/degree sinusoidal gratings, presented in an on/off mode. Following conventional averaging, the discrete wavelet transform (DWT) was applied. Multi-resolution decomposition was used to divide the responses into 6 orthogonal frequency bands. The results show that high frequency oscillatory activity in the beta and gamma frequency range is closely related in time to the N70 peak of the simultaneous VEP. Power in both bands is modulated by spatial frequency. Beta range response to hemifield stimulation recorded over a chain of electrodes over the occipital area lateralizes in the same manner as N70, while gamma range activity is insensitive to lateralization and is more closely linked to foveal stimulation. This dissociation between beta and gamma range activity suggests that different bands of high frequency oscillatory activity in humans, linked to visual stimulation, may represent different aspects of visual processing. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|