首页 | 本学科首页   官方微博 | 高级检索  
     


Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET
Authors:Hongzan Sun  Jun Xin  Jinyuan Zhou  Zaiming Lu  Qiyong Guo
Affiliation:1.Department of Radiology,Shengjing Hospital of China Medical University,Shenyang,People’s Republic of China;2.Division of MR Research, Department of Radiology,Johns Hopkins University,Baltimore,USA
Abstract:

Purpose

The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[18F-]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI.

Procedures

Twenty-one subjects underwent brain gadolinium-enhanced [18F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [18F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis.

Results

APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [18F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [18F]FDG-avid tumors.

Conclusions

APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [18F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号