首页 | 本学科首页   官方微博 | 高级检索  
检索        


Hazardous nature of high-temporal-frequency strobe light stimulation: neural mechanisms revealed by magnetoencephalography
Authors:Y Shigihara  M Tanaka  N Tsuyuguchi  H Tanaka  Y Watanabe
Institution:1. Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan;2. Department of Biomarker and Molecular Biophysics, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan;3. Department of Neurosurgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan;4. MEG Department, Yokogawa Electric Corporation, 2-3 Hokuyoudai, Kanazawa City, Ishikawa 920-0177, Japan;5. RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe City, Hyogo 650-0047, Japan
Abstract:Individuals in contemporary society are continually exposed to various visual stimuli. Such stimulation, especially when high in temporal frequency, may sometimes cause unexpected events such as photosensitive seizures. Although many studies have demonstrated that high-temporal-frequency (>3 Hz) visual stimulation can yield hazardous responses in the CNS, the mechanisms by which it does so are still unclear. We therefore investigated the mechanisms of neural perturbation by high-temporal-frequency strobe light stimulation with high-temporal-frequency resolution (4–20 Hz with an interval of 2 Hz) using magnetoencephalography with high temporal and spatial resolution. We show that (1) three temporal dipole phases (phases 1, 2 and 3, by time course) can be identified in the visual evoked magnetic fields (VEF's) across stimulation frequencies based on the goodness-of-fit values for equivalent current dipole estimation and horizontal dipole directions, (2) the dipole moment of VEF's is correlated with autonomic nervous system activity in phases 1 and 2, (3) some temporal stimulation frequencies enhance magnetic responses in phases 1, 2 and 3, and (4) these frequencies are harmonically related, with a greatest common divisor frequency (fundamental frequency) of approximately 6.5 Hz. Our clarification of the temporal frequency characteristics of VEF's will contribute to understanding of the potential hazardous effects of high-temporal-frequency strobe light stimulation in the CNS.
Keywords:autonomic nervous system  equivalent current dipole (ECD)  magnetoencephalography (MEG)  periodic system  transient-type red flashing strobe light
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号