首页 | 本学科首页   官方微博 | 高级检索  
     


Wld can delay Wallerian degeneration in mice when interaction with valosin-containing protein is weakened
Authors:B. Beirowski  G. Morreale  L. Conforti  F. Mazzola  M. Di Stefano  A. Wilbrey  E. Babetto  L. Janeckova  G. Magni  M.P. Coleman
Affiliation:1. The Babraham Institute, Babraham Research Campus, Laboratory of Molecular Signalling, Cambridge CB22 3AT, UK;2. Institute of Biochemical Biotechnologies, University of Ancona, Via Ranieri, 60131 Ancona, Italy
Abstract:Axon degeneration is an early event in many neurodegenerative disorders. In some, the mechanism is related to injury-induced Wallerian degeneration, a proactive death program that can be strongly delayed by the neuroprotective slow Wallerian degeneration protein (WldS) protein. Thus, it is important to understand the Wallerian degeneration mechanism and how WldS blocks it. WldS location is influenced by binding to valosin-containing protein (VCP), an essential protein for many cellular processes including membrane fusion and endoplasmic reticulum-associated degradation. In mice, the N-terminal 16 amino acids (N16), which mediate VCP binding, are essential for WldS to protect axons, a role which another VCP binding sequence can substitute. In Drosophila, the WldS phenotype is weakened by a similar N-terminal truncation and by knocking down the VCP homologue ter94. Neither null nor floxed VCP mice are viable so it is difficult to confirm the requirement for VCP binding in mammals in vivo. However, the hypothesis can be tested further by introducing a WldS missense mutation, altering its affinity for VCP but minimizing the risk of disturbing other aspects of its structure or function. We introduced the R10A mutation, which weakens VCP binding in vitro, and expressed it in transgenic mice. R10AWldS fails to co-immunoprecipitate VCP from mouse brain, and only occasionally and faintly accumulates in nuclear foci for which VCP binding is necessary but not sufficient. Surprisingly however, axon protection remains robust and indistinguishable from that in spontaneous WldS mice. We suggest that either N16 has an additional, VCP-independent function in mammals, or that the phenotype requires only weak VCP binding which may be driven forwards in vivo by the high VCP concentration.
Keywords:axon   axon degeneration   VCP   ter94   neuroprotection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号