首页 | 本学科首页   官方微博 | 高级检索  
检索        


Orbitofrontal dopaminergic dysfunction causes age-related impairment of reversal learning in rats
Authors:K Mizoguchi  H Shoji  Y Tanaka  T Tabira
Institution:1. Section of Oriental Medicine, Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology (NCGG), 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan;2. Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan;3. Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakuakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan;4. Department of Diagnosis, Prevention and Treatment of Dementia, University & Post Graduate University of Juntendo, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan;5. National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology (NCGG), 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
Abstract:Reversal learning is a domain that involves cognitive flexibility and is defined as the ability to rapidly alter established patterns of behavior when confronted with changing circumstances. This function depends critically on the orbitofrontal cortex (OFC) in the prefrontal cortical (PFC) structure, which is among the most sensitive to the influences of aging, and impaired reversal learning is a common functional disturbance of aged brain. The present study was designed to clarify the precisely neurochemical basis of this impaired learning in rats. For this purpose, we first examined reversal learning in young (3-month-old) and aged (24-month-old) rats using a T-maze discrimination task. The ability of aged rats to learn initially a reward rule for a T-maze discrimination task was almost equal to that of young rats, suggesting that simple discrimination ability was normal in aged rats. However, the ability to learn a reversed rule in a subsequent task was markedly impaired in aged rats. In addition, aged rats had reduced dopaminergic transmission concomitant with attenuated tyrosine hydroxylase (TH) activity in the OFC. Moreover, age-related impairment of reversal learning was improved by an intra-OFC infusion of 30 ng, but not 10 ng, of the D1 receptor agonist SKF 81297. Increasing dose of SKF 81297 to 100 ng also improved the impairment, but this effect was weaker than that of 30 ng, indicating that the SKF 81297 response was an inverted “U” pattern. The maximum SKF 81297 response (30 ng) was abolished by the D1 receptor antagonist SCH 23390. Thus, age-related impairment of reversal learning was due to a D1 receptor-mediated hypodopaminergic mechanism in the OFC. This finding provides direct evidence showing the involvement of OFC dopaminergic dysfunction in the development of cognitive inflexibility during the normal aging process
Keywords:aging  reversal learning  orbitofrontal cortex  dopamine  tyrosine hydroxylase  rat
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号