CD4+ T helper cell-independent antitumor response mediated by murine IFN-beta gene delivery in immunocompetent mice. |
| |
Authors: | Jennifer L Brown James Barsoum Xiao-Qiang Qin |
| |
Affiliation: | Biogen, Inc., Cambridge, MA 02142, USA. |
| |
Abstract: | Previously, we provided evidence that adenovirus-mediated interferon-beta (IFN-beta) gene therapy inhibits tumor formation and causes dramatic regression of established tumors in immunodeficient mice. We suggested that local IFN-beta gene therapy with adenoviral vectors could be an effective treatment for cancer. In this report, the actions of murine IFN-beta (MuIFN-beta) gene delivery on both subcutaneous and metastatic tumors were evaluated in syngeneic immunocompetent mice. We found that the antitumor response mediated by MuIFN-beta gene delivery relied on CD8(+) T cells but was completely independent of CD4(+) T cells. In fact, depletion of CD4(+) T cells appeared to enhance the effect on tumor inhibition and animal survival induced by adenovirus-MuIFN-beta gene delivery. Therefore, adenovirus-MuIFN-beta gene therapy can bypass CD4(+) T helper (Th) cells and activate an effective CD8(+) T cell-dependent antitumor immunity in immunocompetent mice. Furthermore, we found that depletion of macrophages but not natural killer (NK) cells suppressed the antitumor response induced by MuIFN-beta gene therapy. These data, together with our previous results, suggest that in the clinical setting, local adenovirus-mediated IFN-beta gene therapy may lead to an efficient and long-lasting eradication of tumors by a direct antitumor effect and via activation of the innate and the adoptive immune systems. |
| |
Keywords: | |
|
|