首页 | 本学科首页   官方微博 | 高级检索  
     


Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor
Authors:Ramesh Rajagopal  Mhashilkar Abner M  Tanaka Fumihiro  Saito Yuji  Branch Cynthia D  Sieger Kerry  Mumm John B  Stewart Alexis L  Boquoi Amelie  Dumoutier Laure  Grimm Elizabeth A  Renauld Jean-Christophe  Kotenko Sergei  Chada Sunil  Boquio Amelia
Affiliation:Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. rramesh@mdanderson.org
Abstract:The melanoma differentiation-associated gene 7 (mda-7), also called interleukin (IL)-24, suppresses the growth of some cancers in vitro and in vivo as a result of the ectopic expression of its protein. However, the function of the secreted form of the protein in cancer has not been previously studied. The purpose of this study was to determine the antiangiogenic function of a secreted form of the MDA-7/IL-24 protein (sMDA-7/IL-24). In vitro, sMDA-7/IL-24 inhibited both endothelial cell differentiation and migration of endothelial cells induced by vascular endothelial growth factor and basic fibroblast growth factor. The sMDA-7/IL-24-mediated inhibitory effect was 10-50 times more potent than endostatin, IFN-gamma, and IFN-inducible protein 10 in vitro. Furthermore, the inhibitory effect was not mediated by IFN or IFN-inducible protein 10. IL-22 receptor mediated the antiangiogenic activity of sMDA-7/IL-24. Administration of a blocking antibody to IL-22 receptor in conjunction with sMDA-7/IL-24 led to abrogation of inhibition of endothelial differentiation. sMDA-7/IL-24 inhibited vascular endothelial growth factor-induced angiogenesis as evidenced by reduced vascularization and hemoglobin content in in vivo Matrigel plug assays. In vivo, the growth of human lung tumor cells was significantly inhibited, and vascularization was reduced when the cells were mixed with 293 cells stably expressing sMDA-7/IL-24. Systemic administration of sMDA-7/IL-24 inhibited lung tumor growth in a mouse xenograft model. Associated with tumor growth inhibition was decreased tumor microvessel density and hemoglobin content, indicating the presence of antiangiogenic activity. These data demonstrate that sMDA-7/IL-24 is a novel and potent antiangiogenic effector and support the development of MDA-7/IL-24-based therapeutics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号