首页 | 本学科首页   官方微博 | 高级检索  
     


Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles
Authors:Liu Yanping  Terata Ken  Chai Qiang  Li Hongwei  Kleinman Leonard H  Gutterman David D
Affiliation:Department of Internal Medicine, Medical College of Wisconsin, and Zablocki VA Medical Center, Milwaukee, Wis 53226, USA. ypliu@mcw.edu
Abstract:We examined the hypothesis that ONOO-, a product of the interaction between superoxide (O2*-) and nitric oxide (NO), inhibits calcium-activated K+ (KCa) channel activity in vascular smooth muscle cells (VSMCs) of human coronary arterioles (HCAs), thereby reducing hyperpolarization-mediated vasodilation. HCAs were dissected from right atrial appendages. The interaction of ONOO- with microvessels was determined by immunohistochemistry using a nitrotyrosine antibody. Strong staining was observed in arteries exposed to authentic ONOO- or to sodium nitroprusside (SNP)+xanthine (XA)+xanthine oxidase (XO). Dilation to 10(-8) mol/L bradykinin (BK) was abolished in vessels exposed to ONOO- (-2.5+/-8%; P<0.05) but not DC-ONOO- (65+/-8%). Reduced dilation to BK was also observed after application of XO and SNP. Dilation to NS1619 (KCa channel opener) was reduced in endothelial denuded arterioles treated with ONOO-. In isolated VSMCs, whole-cell peak K+ current density was reduced by ONOO- (control 65+/-15 pA/pF; ONOO- 42+/-9 pA/pF; P<0.05). Iberiotoxin had no further effect on whole-cell K+ current. In inside-out patches, ONOO- but not DC-ONOO- decreased open state probability (NP(o)) of KCa channel by 50+/-12%. O2*- generated by XA+XO had no effect on BK-induced dilation and NP(o) of KCa channels. These results suggest that ONOO-, but not O2*-, inhibits KCa channel activity in VSMCs possibly by a direct effect. This mechanism may contribute to impaired EDHF-mediated dilation in conditions such as ischemia/reperfusion where increased activity of NO synthase occurs in the presence of excess of O2*-.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号