首页 | 本学科首页   官方微博 | 高级检索  
检索        


Kinetic analysis of 18F-fluorodihydrorotenone as a deposited myocardial flow tracer: comparison to 201Tl.
Authors:Robert C Marshall  Patricia Powers-Risius  Bryan W Reutter  James P O'Neil  Michael La Belle  Ronald H Huesman  Henry F VanBrocklin
Institution:Department of Nuclear Medicine and Functional Imaging, E.O. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.
Abstract:The goals of this investigation were to assess the accuracy of (18)F-fluorodihydrorotenone ((18)F-FDHR) as a new deposited myocardial flow tracer and to compare the results to those for (201)Tl. METHODS: The kinetics of these flow tracers in 22 isolated, erythrocyte- and albumin-perfused rabbit hearts were evaluated over a flow range encountered in patients. The 2 flow tracers plus a vascular reference tracer ((131)I-albumin) were introduced as a bolus through a port just above the aortic cannula. Myocardial extraction, retention, washout, and uptake parameters were computed from the venous outflow curves with the multiple-indicator dilution technique and spectral analysis. RESULTS: The mean +/- SD initial extraction fractions for (18)F-FDHR (0.85 +/- 0.07) and (201)Tl (0.87 +/- 0.05) were not significantly different, although the initial extraction fraction for (18)F-FDHR declined with flow (P < 0.0001), whereas the initial extraction fraction for (201)Tl did not. The washout of (201)Tl was faster (P < 0.001) and more affected by flow (P < 0.05) than was the washout of (18)F-FDHR. Except for the initial extraction fraction, (18)F-FDHR retention was higher (P < 0.001) and less affected by flow (P < 0.05) than was (201)Tl retention. Reflecting its superior retention, the net uptake of (18)F-FDHR was better correlated with flow than was that of (201)Tl at both 1 and 15 min after tracer introduction (P < 0.0001 for both comparisons). CONCLUSION: The superior correlation of (18)F-FDHR uptake with flow indicates that it is a better flow tracer than (201)Tl in the isolated rabbit heart. Compared with the other currently available positron-emitting flow tracers ((82)Rb, (13)N-ammonia, and (15)O-water), (18)F-FDHR has the potential of providing excellent image resolution without the need for an on-site cyclotron.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号