首页 | 本学科首页   官方微博 | 高级检索  
检索        


NTPDase1 governs P2X7‐dependent functions in murine macrophages
Authors:Sébastien A Lévesque  Filip Kukulski  Keiichi Enjyoji  Simon C Robson  Jean Sévigny
Institution:1. Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada;2. Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
Abstract:P2X7 receptor is an adenosine triphosphate (ATP)‐gated ion channel within the multiprotein inflammasome complex. Until now, little is known about regulation of P2X7 effector functions in macrophages. In this study, we show that nucleoside triphosphate diphosphohydrolase 1 (NTPDase1)/CD39 is the dominant ectonucleotidase expressed by murine peritoneal macrophages and that it regulates P2X7‐dependent responses in these cells. Macrophages isolated from NTPDase1‐null mice (Entpd1?/?) were devoid of all ADPase and most ATPase activities when compared with WT macrophages (Entpd1+/+). Entpd1?/? macrophages exposed to millimolar concentrations of ATP were more susceptible to cell death, released more IL‐1β and IL‐18 after TLR2 or TLR4 priming, and incorporated the fluorescent dye Yo‐Pro‐1 more efficiently (suggestive of increased pore formation) than Entpd1+/+ cells. Consistent with these observations, NTPDase1 regulated P2X7‐associated IL‐1β release after synthesis, and this process occurred independently of, and prior to, cytokine maturation by caspase‐1. NTPDase1 also inhibited IL‐1β release in vivo in the air pouch inflammatory model. Exudates of LPS‐injected Entpd1?/? mice had significantly higher IL‐1β levels when compared with Entpd1+/+ mice. Altogether, our studies suggest that NTPDase1/CD39 plays a key role in the control of P2X7‐dependent macrophage responses.
Keywords:ATP‐induced death  CD39  IL‐1b  Macrophage  Nucleoside triphosphate diphosphohydrolase 1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号