Antioxidant properties of ursodeoxycholic acid |
| |
Authors: | Lapenna Domenico Ciofani Giuliano Festi Davide Neri Matteo Pierdomenico Sante D Giamberardino Maria Adele Cuccurullo Franco |
| |
Affiliation: | Dipartimento di Medicina e Scienze dell'Invecchiamento, Facolta' di Medicina e Chirurgia, Universita' G. d'Annunzio, 66100 Scalo, Chieti, Italy. piersd@tiscalinet.it |
| |
Abstract: | We have investigated potential antioxidant properties of the clinically relevant bile acid UDCA, which reaches therapeutic concentrations up to 0.09 and 29 mM, respectively, in human plasma and bile. UDCA was an excellent scavenger of OHz.rad; generated by FeCl(3)-EDTA, H(2)O(2) and ascorbate in the deoxyribose oxidation test, showing IC(min) and IC(50) values of 0.02 and 0.2 mM, respectively, and a second-order rate constant for reaction with OHz.rad; of 2+/-0.1 x 10(10)M(-1)s(-1). Notably, the drug could enhance at 1.5 mM concentration the antioxidant capacity of human bile against OHz.rad;-induced deoxyribose oxidation. UDCA also showed antioxidant effects in the deoxyribose test performed with nonchelated iron ions, such as Fe(2+) plus H(2)O(2) (IC(min): 7 mM, IC(50): 20 mM) or Fe(3+) plus H(2)O(2) and ascorbate (IC(min): 0.3 mM, IC(50): 5 mM), and inhibited ferrozine-Fe(2+) and desferrioxamine-Fe(3+) complexes formation with IC(50) values of, respectively, 12 and 0.3 mM, indicating that the drug interacts more with iron(III) than with iron(II). Moreover, UDCA significantly inhibited phospholipid liposome peroxidation induced by the OHz.rad;-generating system FeCl(3)-EDTA, H(2)O(2) and ascorbate (IC(min): 0.75 mM, IC(50): 3 mM), and by peroxyl radicals generated in the aqueous phase by AAPH (IC(min): 8 mM, IC(50): 14 mM). UDCA, even at 25 mM concentration, was ineffective on the lipoperoxidation mediated by Fe(2+) alone, but at the same concentration counteracted significantly that by Fe(3+) plus ascorbate, further pointing to its preferential antioxidant interaction with iron(III).In conclusion, UDCA has direct antioxidant properties, which are especially relevant against Fe(3+)- and OHz.rad;-dependent biomolecular oxidative damage; such properties are evident at therapeutically relevant drug concentrations, suggesting that UDCA could act as an antioxidant in vivo. |
| |
Keywords: | UDCA, ursodeoxycholic acid OH 0" alt=" radical dot" src=" http://cdn.els-cdn.com/sd/entities/rad" class=" glyphImg" >, hydroxyl radical EDTA, ethylenediaminetetraacetic acid PPB, potassium phosphate buffer TBA, thiobarbituric acid TBARS, thiobarbituric acid reactive substances AAPH, 2,2′-azobis(amidinopropane) dihydrochloride BHT, butylated hydroxytoluene smallcaps" >icmin, minimal drug concentration inhibiting significantly deoxyribose or phospholipid oxidation, as well as ferrozine-Fe2+ or desferrioxamine-Fe3+ complexes formation smallcaps" >ic50, drug concentration inhibiting by 50% deoxyribose or phospholipid oxidation, as well as ferrozine-Fe2+ or desferrioxamine-Fe3+ complexes formation. |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|