首页 | 本学科首页   官方微博 | 高级检索  
检索        


Goat milk supplemented with folic acid protects cell biomolecules from oxidative stress-mediated damage after anaemia recovery in comparison with cow milk
Authors:Javier Díaz-Castro  Ana Sánchez-Alcover  Silvia Hijano  María J M Alférez  Teresa Nestares  Miguel Moreno  Margarita S Campos  Inmaculada López-Aliaga
Institution:1. Department of Physiology, Faculty of Pharmacy and Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain
Abstract:

Background

Fe overload is a common consequence of the anaemia treatment, increasing the oxidative stress and promoting the accumulation of damaged biomolecules, with the subsequently impairment of cell functions. Oxidative stress and the role of folic acid preventing free radical damage have been extensively studied; nevertheless, no studies are available about the influence of folic acid-supplemented goat milk consumption on the oxidative stress-mediated damage.

Aim

The objective of the present study was to assess the influence of folic acid supplementation of goat milk- or cow milk-based diets, after Fe-overload treatment to palliate anaemia, on oxidative stress-mediated biomolecular damage in the liver, brain, erythrocytes, duodenal mucosa and plasma.

Methods

Control and anaemic rats were fed goat milk- or cow milk-based diets, either with normal Fe or Fe overload (450 mg/kg), and normal folic acid (2 mg/kg) or folic acid supplemented (40 mg/kg) for 30 days.

Results

During chronic Fe repletion, background DNA damage was significantly lower in anaemic rats fed folic acid-supplemented goat milk-based diet, as revealed by tail DNA (%), and folic acid-supplemented goat milk also had a beneficial effect, reducing the extent of lipid peroxidation in liver, plasma, erythrocytes and especially in brain and duodenal mucosa. Furthermore, protein oxidative damage was lower in anaemic rat duodenal mucosa for all goat milk-based diets.

Conclusions

Folic acid supplement in goat milk avoids the undesirable effects of Fe overload during anaemia recovery in all the tissues studied, especially in the liver and duodenal mucosa, which are the tissues with higher exposition to dietary Fe.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号