首页 | 本学科首页   官方微博 | 高级检索  
     


Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications
Authors:Martins Ana M  Santos Marina I  Azevedo Helena S  Malafaya Patricia B  Reis Rui L
Affiliation:3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Abstract:This work describes the development of a biodegradable matrix, based on chitosan and starch, with the ability to form a porous structure in situ due to the attack by specific enzymes present in the human body (alpha-amylase and lysozyme). Scaffolds with three different compositions were developed: chitosan (C100) and chitosan/starch (CS80-20, CS60-40). Compressive test results showed that these materials exhibit very promising mechanical properties, namely a high modulus in both the dry and wet states. The compressive modulus in the dry state for C100 was 580+/-33MPa, CS80-20 (402+/-62MPa) and CS60-40 (337+/-78MPa). Degradation studies were performed using alpha-amylase and/or lysozyme at concentrations similar to those found in human serum, at 37 degrees C for up to 90 days. Scanning electron micrographs showed that enzymatic degradation caused a porous structure to be formed, indicating the potential of this methodology to obtain in situ forming scaffolds. In order to evaluate the biocompatibility of the scaffolds, extracts and direct contact tests were performed. Results with the MTT test showed that the extracts of the materials were clearly non-toxic to L929 fibroblast cells. Analysis of cell adhesion and morphology of seeded osteoblastic-like cells in direct contact tests showed that at day 7 the number of cells on CS80-20 and CS60-40 was noticeably higher than that on C100, which suggests that starch containing materials may promote cell adhesion and proliferation. This combination of properties seems to be a very promising approach to obtain scaffolds with gradual in vivo pore forming capability for bone tissue engineering applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号