首页 | 本学科首页   官方微博 | 高级检索  
     


Development of immunofiltration assay by light addressable potentiometric sensor with genetically biotinylated recombinant antibody for rapid identification of Venezuelan equine encephalitis virus
Authors:Hu Wei-Gang  Thompson H Gail  Alvi Azhar Z  Nagata Les P  Suresh Mavanur R  Fulton R Elaine
Affiliation:Chemical and Biological Defence Section, Defence R&D Canada-Suffield, Medicine Hat, Alberta, Canada.
Abstract:A genetically biotinylated single chain fragment variable antibody (scFv) against Venezuelan equine encephalitis virus (VEE) was applied in a system consisting of an immunofiltration enzyme assay (IFA) with a light addressable potentiometric sensor (LAPS) for the rapid identification of VEE. The IFA involved formation of an immunocomplex sandwich consisting of VEE, biotinylated antibody, fluoresceinated antibody and streptavidin, capture of the sandwich by filtration on biotinylated membrane, and labeling of the sandwich by anti-fluorescein urease conjugate. The concentration ratio of biotinylated to fluoresceinated antibodies was investigated and optimized. By the IFA/LAPS assay, the limit of detection (LOD) of VEE was approximately 30 ng/ml, similar to that achieved when chemically biotinylated monoclonal antibody (mAb) was applied. Total assay variance of the IFA/LAPS assay for both intra- and inter-assay precision was less than 20%. Assay accuracy was measured by comparing VEE concentrations estimated by IFA/LAPS standard curve to those obtained by conventional protein assay. VEE concentrations were found to differ by no more than 10%. The IFA/LAPS assay sensitivity was approximately equal to that of a conventional enzyme-linked immunosorbent assay (ELISA) utilizing polystyrene plates and a chromogenic substrate; however, less time and effort were required for performance of the IFA/LAPS assay. More importantly, use of genetically biotinylated scFv in the IFA/LAPS assay obviates the need for chemical biotinylation of antibody with resultant possible impairment of the antigen-binding site. Furthermore, the potential for batch-to-batch variability resulting from inequality in the number of biotin molecules labeled per antibody molecule is eliminated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号