首页 | 本学科首页   官方微博 | 高级检索  
检索        


Concordance of P450 2D6 (debrisoquine hydroxylase) phenotype and genotype: inability of dextromethorphan metabolic ratio to discriminate reliably heterozygous and homozygous extensive metabolizers.
Authors:W E Evans  M V Relling
Institution:Pharmaceutical Division, St. Jude Children's Research Hospital, Memphis, TN 38101.
Abstract:Debrisoquine-hydroxylase (P450 2D6) not equal to phenotype was determined in 116 individuals using dextromethorphan as the substrate probe. Polymerase chain reaction and restriction fragment length polymorphism analyses were used to detect inactivating mutations in the CYP2D6 gene and assign genotype in all 116 individuals. Using a urinary metabolic ratio (DM/DT) of > or = 0.3 to define poor metabolizer (PM) phenotypes, 96 subjects were extensive metabolizers (EM) and 20 were PMs. The CYP2D6(B) mutation was the most common mutation, present in 18% of phenotypic EM alleles and 66% of the alleles in PM phenotypes. The CYP2D6(A) mutation (8% of PM alleles) and the CYP2D6 gene deletion (2.6% of PM alleles) were found less frequently. Seven different variants of the CYP2D6 gene were found. In subjects with two mutant alleles, genotype correctly predicted the PM phenotype in 100% (n = 13). Overall, genotype agreed with phenotype assignments in 109 of 116 (94%) subjects. Seven subjects with a wild-type allele at the CYP2D6(A) and CYP2D6(B) loci were phenotypic PMs, representing the only discrepant results. These discrepancies could be due to the imprecision of phenotype assignment or to as yet unknown mutations in CYP2D6. Although the median urinary metabolic ratio was significantly lower in homozygous EMs compared with heterozygous EMs, there was extensive overlap in metabolic ratios in these two groups, indicating that the DM/DT metabolic ratio cannot reliably discriminate homozygous EMs from heterozygous EMs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号