首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling dendrite density from magnetic resonance diffusion measurements
Authors:Jespersen Sune N  Kroenke Christopher D  Østergaard Leif  Ackerman Joseph J H  Yablonskiy Dmitriy A
Affiliation:1. Center of Functionally Integrative Neuroscience, Aarhus University Hospital–Århus Sygehus, Nørrebrogade 44, Building 30, 8000 Århus C, Denmark;2. Department of Radiology, Washington University, St. Louis, Missouri 63110, USA;3. Department of Chemistry, Washington University, St. Louis, Missouri 63110, USA;4. Department of Internal Medicine, Washington University, St. Louis, Missouri 63110, USA;5. Department of Physics, Washington University, St. Louis, Missouri 63110, USA
Abstract:Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (D(L)) and perpendicular (D(T)) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides an estimate of dendrite density from noninvasive MR diffusion measurements, a parameter likely to be of value for understanding normal as well as abnormal brain development and function.
Keywords:Diffusion   Neural tissue   Cytoarchitectonics   Spherical harmonics
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号