首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波神经网络时间序列模型预测血药浓度的研究
引用本文:闫辉辉,朱智慧,刘伦铭,方晴霞,王刚,赵华军. 基于小波神经网络时间序列模型预测血药浓度的研究[J]. 中国现代应用药学, 2016, 33(11): 1417-1422
作者姓名:闫辉辉  朱智慧  刘伦铭  方晴霞  王刚  赵华军
作者单位:浙江中医药大学,浙江中医药大学,浙江中医药大学,浙江省人民医院,杭州市第一人民医院,浙江中医药大学
摘    要:基于小波神经网络时间序列模型预测阿司匹林血药浓度,来评价模型的适应性。方法 对4组家兔进行灌胃,分别于0.15 h、0.25 h、0.5 h、1.0 h、1.5 h、2.0 h、2.5 h、3.0 h、3.5 h、4.0 h、6.0 h、13.0 h、22.0 h时间点获取血药浓度数据,利用计算机软件MATLAB对其中3组实验数据进行网络训练,利用训练好的网络对剩下的1组血药浓度数据进行预测。之后联合药代动力学,判断其房室模型和药代动力学特点。结果 模拟仿真结果与实际数据基本相符合,网络的绝对平均误差范围在0.3%~5.39%,在统计学允许误差范围之内。联合药代动力学仿真证明了阿司匹林的血管外给药药动学特点是二室模型。结论 小波神经网络时间序列模型在预测阿司匹林血药浓度时具有较好的拟合能力和优良的预测能力,同时与药代动力学的结合更为现代临床药理的研究起到积极的推动作用。

关 键 词:小波神经网络;时间序列;血药浓度;药代动力学;MATLAB
收稿时间:2016-03-14
修稿时间:2016-07-09

Prediction of Plasma Concentration Based on Wavelet Neural Network Time Series Model
YAN Huihui,ZHU Zhihui,LIU Lunming,FANG Qingxi,WANG Gang and ZHAO Huajun. Prediction of Plasma Concentration Based on Wavelet Neural Network Time Series Model[J]. The Chinese Journal of Modern Applied Pharmacy, 2016, 33(11): 1417-1422
Authors:YAN Huihui  ZHU Zhihui  LIU Lunming  FANG Qingxi  WANG Gang  ZHAO Huajun
Affiliation:Zhejiang Chinese Medical University,Zhejiang Chinese Medical University,Zhejiang Chinese Medical University,Zhejiang Provincial People''s Hospital,Hangzhou First People''s Hospital,Zhejiang Chinese Medical University
Abstract:Abstract Objective To evaluate the adaptability of wavelet neural network time series model through predicting the concentration of aspirin in blood. Methods 4 groups of rabbits were fed with aspirin, and plasma concentration data were obtained in 0.15 h, 0.25 h, 0.5 h, 1.0 h, 1.5 h, 2.0 h, 2.5 h, 3.0 h, 3.5 h, 4.0 h, 6.0 h, 13.0 h, 22.0 h time points. Then through the software MATLAB, 3 groups of experimental data were trained by network, and the trained network was used to predict the plasma concentration data of the 1 group. Its characteristics of the compartment model and pharmacokinetic were determined by combination of pharmacokinetics. Results The simulation results were consistent with the actual data, and the absolute mean error of the network was in the range of 0.3%~5.39%. The pharmacokinetics of aspirin in two compartment model was proved by combination of pharmacokinetic simulation. Conclusion Wavelet neural network time series model in predicting the plasma concentration of aspirin are with good fitting capability and excellent predictive ability, at the same time with the combination of pharmacokinetics more plays a positive role in promoting modern clinical pharmacology research.
Keywords:wavelet neural network  time series  plasma concentration  pharmacokinetics  MATLAB
点击此处可从《中国现代应用药学》浏览原始摘要信息
点击此处可从《中国现代应用药学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号