首页 | 本学科首页   官方微博 | 高级检索  
检索        


Audiological and electrocochleography findings in hearing-impaired children with connexin 26 mutations and otoacoustic emissions
Authors:Rosamaria Santarelli  Elona Cama  Pietro Scimemi  Erica Dal Monte  Elisabetta Genovese  Edoardo Arslan
Institution:(1) Department of Medical and Surgical Specialities, Audiology and Phoniatric Service, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy;(2) ENT Department, University of Modena, Modena, Italy
Abstract:We recorded cochlear potentials by transtympanic electrocochleography (ECochG) in three hearing-impaired children with GJB2 mutation who showed otoacoustic emissions. Pure tone thresholds, distortion product otoacoustic emissions (DPOAEs) and, auditory brainstem responses (ABRs) were also obtained. Subjects 1 (35delG/35delG) and 3 (M34T/wt) had profound hearing loss and showed the picture of auditory neuropathy (AN) as DPOAEs were detected with absent ABRs in both ears. The hearing impairment found in subject 2 (35delG/35delG) was profound in the right ear and moderate in the left ear. Both DPOAEs and ABRs with normal latencies and morphology were recorded only from the left ear. On the ECochG recording the cochlear microphonic was obtained from all children. No compound action potential (CAP) was detected in subject 1. A neural response was recorded only from the left ear in subject 2 with a threshold corresponding to the audiometric threshold while no CAP was detected on the right side. The ECochG obtained from subject 3 showed a low-amplitude broad negative deflection which was identifiable down to low stimulus levels. This response decreased in amplitude and duration when utilizing a high-rate stimulation paradigm. The amount of amplitude reduction was close to that calculated for normal ears, thus revealing the presence of an adapting neural component. These findings indicate that patients with GJB2 mutations and preserved outer hair cells function could present with the picture of AN. The hearing impairment is underlain by a selective inner hair cell loss or a lesion involving the synapses and/or the auditory nerve terminals. We suggest that neonatal hyperbilirubinemia may play a role in protecting outer hair cells against the damage induced by GJB2 mutations.
Keywords:Electrocochleography  Auditory neuropathy  Hyperbilirubinemia  Connexin 26
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号