首页 | 本学科首页   官方微博 | 高级检索  
     


Investigating the Linear Thermal Expansion of Additively Manufactured Multi-Material Joining between Invar and Steel
Authors:Alexander Arbogast  Sougata Roy  Andrzej Nycz  Mark W. Noakes  Christopher Masuo  Sudarsanam Suresh Babu
Affiliation:1.Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37916, USA;2.Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; (A.N.); (M.W.N.); (C.M.);3.Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;4.Department of Mechanical Engineering, University of North Dakota, Grand Forks, ND 58202, USA;
Abstract:This work investigated the linear thermal expansion properties of a multi-material specimen fabricated with Invar M93 and A36 steel. A sequence of tests was performed to investigate the viability of additively manufactured Invar M93 for lowering the coefficient of thermal expansion (CTE) in multi-material part tooling. Invar beads were additively manufactured on a steel base plate using a fiber laser system, and samples were taken from the steel, Invar, and the interface between the two materials. The CTE of the samples was measured between 40 °C and 150 °C using a thermomechanical analyzer, and the elemental composition was studied with energy dispersive X-ray spectroscopy. The CTE of samples taken from the steel and the interface remained comparable to that of A36 steel; however, deviations between the thermal expansion values were prevalent due to element diffusion in and around the heat-affected zone. The CTEs measured from the Invar bead were lower than those from the other sections with the largest and smallest thermal expansion values being 10.40 μm/m-K and 2.09 μm/m-K. In each of the sections, the largest CTE was measured from samples taken from the end of the weld beads. An additional test was performed to measure the aggregate expansion of multi-material tools. Invar beads were welded on an A36 steel plate. The invar was machined, and the sample was heated in an oven from 40 °C and 160 °C. Strain gauges were placed on the surface of the part and were used to analyze how the combined thermal expansions of the invar and steel would affect the thermal expansion on the surface of a tool. There were small deviations between the expansion values measured by gauges placed in different orientations, and the elongation of the sample was greatest along the dimension containing a larger percentage of steel. On average, the expansion of the machined Invar surface was 42% less than the expansion of the steel surface. The results of this work demonstrate that additively manufactured Invar can be utilized to decrease the CTE for multi-material part tooling.
Keywords:additive manufacturing   multi-material joining   Invar   steel   coefficient of thermal expansion   tooling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号