首页 | 本学科首页   官方微博 | 高级检索  
检索        


GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus
Authors:Thomas Klausberger
Institution:MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
Abstract:The dendrites of pyramidal cells are active compartments capable of independent computations, input/output transformation and synaptic plasticity. Pyramidal cells in the CA1 area of the hippocampus receive 92% of their GABAergic input onto dendrites. How does this GABAergic input participate in dendritic computations of pyramidal cells? One key to understanding their contribution to dendritic computation lies in the timing of GABAergic input in relation to excitatory transmission, back‐propagating action potentials, Ca2+ spikes and subthreshold membrane dynamics. The issue is further complicated by the fact that dendritic GABAergic inputs originate from numerous distinct sources operating with different molecular machineries and innervating different subcellular domains of pyramidal cell dendrites. The GABAergic input from distinct sources is likely to contribute differentially to dendritic computations. In this review, I describe four groups of GABAergic interneuron according to their expression of parvalbumin, cholecystokinin, axonal arborization density and long‐range projections. These four interneuron groups contain at least 12 distinct cell types, which innervate mainly or exclusively the dendrites of CA1 pyramidal cells. Furthermore, I summarize the different spike timing of distinct interneuron types during gamma, theta and ripple oscillations in vivo, and I discuss some of the open questions on how GABAergic input modulates dendritic operations in CA1 pyramidal cells.
Keywords:cell classification  inhibition  network oscillations  synaptic circuits
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号