首页 | 本学科首页   官方微博 | 高级检索  
检索        


Locally measured microstructural parameters are better associated with vertebral strength than whole bone density
Authors:J Hazrati Marangalou  F Eckstein  V Kuhn  K Ito  M Cataldi  F Taddei  B van Rietbergen
Institution:1. Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
2. Institute of Anatomy and Musculoskeletal Research, Paracelsus Private Medical University, Salzburg, Austria
3. Medizinische Universit?t Innsbruck, Innsbruck, Austria
4. Laboratorio di Tecnologia Medica, Istituti Ortopedici Rizzoli, Bologna, Italy
5. Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.118, 5600 MB, Eindhoven, The Netherlands
Abstract:

Summary

Whole vertebrae areal and volumetric bone mineral density (BMD) measurements are not ideal predictors of vertebral fractures. We introduce a technique which enables quantification of bone microstructural parameters at precisely defined anatomical locations. Results show that local assessment of bone volume fraction at the optimal location can substantially improve the prediction of vertebral strength.

Introduction

Whole vertebrae areal and volumetric BMD measurements are not ideal predictors of vertebral osteoporotic fractures. Recent studies have shown that sampling bone microstructural parameters in smaller regions may permit better predictions. In such studies, however, the sampling location is described only in general anatomical terms. Here, we introduce a technique that enables the quantification of bone volume fraction and microstructural parameters at precisely defined anatomical locations. Specific goals of this study were to investigate at what anatomical location within the vertebrae local bone volume fraction best predicts vertebral-body strength, whether this prediction can be improved by adding microstructural parameters and to explore if this approach could better predict vertebral-body strength than whole bone volume fraction and finite element (FE) analyses.

Methods

Eighteen T12 vertebrae were scanned in a micro-computed tomography (CT) system and FE meshes were made using a mesh-morphing tool. For each element, bone microstructural parameters were measured and correlated with vertebral compressive strength as measured experimentally. Whole bone volume fraction and FE-predicted vertebral strength were also compared to the experimental measurements.

Results

A significant association between local bone volume fraction measured at a specific central region and vertebral-body strength was found that could explain up to 90 % of the variation. When including all microstructural parameters in the regression, the predictive value of local measurements could be increased to 98 %. Whole bone volume fraction could explain only 64 % and FE analyses 76 % of the variation in bone strength.

Conclusions

A local assessment of volume fraction at the optimal location can substantially improve the prediction of bone strength. Local assessment of other microstructural parameters may further improve this prediction but is not clinically feasible using current technology.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号