首页 | 本学科首页   官方微博 | 高级检索  
     


The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions
Authors:Khan M A  Williams R L  Williams D F
Affiliation:Department of Clinical Engineering, University of Liverpool, UK.
Abstract:Ti alloys are used in orthopaedic applications owing to their appropriate mechanical properties and their excellent corrosion resistance. The release of titanium and the other alloying elements into the surrounding tissue has been reported due either to passive corrosion or accelerating processes such as wear. Since the passive layer can be broken down in certain circumstances by wear it is important to study the ability of these alloys to repassivate in biological environments, in particular in the presence of proteins, and evaluate how the repassivated surface may vary from the original surface. In this study we investigated the ability of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr to repassivate in phosphate buffered saline (PBS), bovine albumin solutions in PBS and 10% foetal calf serum in PBS at different pH values and at different albumin concentrations. It was found that an increase in pH had a greater effect on the corrosion behaviour of Ti-6Al-4V and Ti-6Al-7Nb than on Ti-13Nb-13Zr in PBS and that the addition of protein to the PBS reduced the influence of pH on the corrosion behaviour of all the alloys. The effect of the corrosion and repassivation was investigated by measuring changes in the surface hardness of the alloys and it was found that corrosion reduced the hardness of the surface oxides of all the alloys. In PBS the reduction was smallest for Ti-6Al-4V and largest for Ti-13Nb- 3Zr and that corrosion in protein solutions further reduced the hardness of the surface oxides. This effect was greater for Ti-6Al-4V and Ti-6Al-7Nb than for Ti-13Nb-13Zr. In conclusion, proteins in the environment appear to interact with the repassivation process at the surface of these alloys and influence the resulting surface properties.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号