首页 | 本学科首页   官方微博 | 高级检索  
     


Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice
Authors:Sukhova Galina K  Wang Bing  Libby Peter  Pan Jie-Hong  Zhang Yaou  Grubb Anders  Fang Kenneth  Chapman Harold A  Shi Guo-Ping
Affiliation:Donald W. Reynolds Cardiovascular Clinical Research Center, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Mass, USA.
Abstract:The pathogenesis of atherosclerosis and abdominal aortic aneurysm involves substantial proteolysis of the arterial extracellular matrix. The lysosomal cysteine proteases can exert potent elastolytic and collagenolytic activity. Human atherosclerotic plaques have increased cysteine protease content and decreased levels of the endogenous inhibitor cystatin C, suggesting an imbalance that would favor matrix degradation in the arterial wall. This study tested directly the hypothesis that impaired expression of cystatin C alters arterial structure. Cystatin C-deficient mice (Cyst C-/-) were crossbred with apolipoprotein E-deficient mice (ApoE-/-) to generate cystatin C and apolipoprotein E-double deficient mice (Cyst C-/-ApoE-/-). After 12 weeks on an atherogenic diet, cystatin C deficiency yielded significantly increased tunica media elastic lamina fragmentation, decreased medial size, and increased smooth muscle cell and collagen content in aortic lesions of ApoE-/- mice. Cyst C-/-ApoE-/- mice also showed dilated thoracic and abdominal aortae compared with control ApoE-/- mice, although atheroma lesion size, intimal macrophage accumulation, and lipid core size did not differ between these mice. These findings demonstrate directly the importance of cysteine protease/protease inhibitor balance in dysregulated arterial integrity and remodeling during experimental atherogenesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号