首页 | 本学科首页   官方微博 | 高级检索  
检索        


Amphiregulin is a factor for resistance of glioma cells to cannabinoid‐induced apoptosis
Authors:Mar Lorente  Arkaitz Carracedo  Sofía Torres  Francesco Natali  Ainara Egia  Sonia Hernández‐Tiedra  María Salazar  Cristina Blázquez  Manuel Guzmán  Guillermo Velasco
Institution:1. Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain;2. Arkaitz Carracedo and Sofía Torres contributed equally to this work.
Abstract:Gliomas, one of the most malignant forms of cancer, exhibit high resistance to conventional therapies. Identification of the molecular mechanisms responsible for this resistance is therefore of great interest to improve the efficacy of the treatments against these tumors. Δ9‐Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the ability of these compounds to induce apoptosis of tumor cells. By analyzing the gene expression profile of two sub‐clones of C6 glioma cells with different sensitivity to cannabinoid‐induced apoptosis, we found a subset of genes with a marked differential expression in the two sub‐clones. Furthermore, we identified the epidermal growth factor receptor ligand amphiregulin as a candidate factor to mediate the resistance of glioma cells to cannabinoid treatment. Amphiregulin was highly overexpressed in the cannabinoid‐resistant cell line, both in culture and in tumor xenografts. Moreover, in vivo silencing of amphiregulin rendered the resistant tumors xenografts sensitive to cannabinoid antitumoral action. Amphiregulin expression was associated with increased extracellular signal‐regulated kinase (ERK) activation, which mediated the resistance to THC by blunting the expression of p8 and TRB3—two genes involved in cannabinoid‐induced apoptosis of glioma cells. Our findings therefore identify Amphirregulin as a factor for resistance of glioma cells to THC‐induced apoptosis and contribute to unraveling the molecular bases underlying the emerging notion that targeted inhibition of the EGFR pathway can improve the efficacy of antitumoral therapies. © 2009 Wiley‐Liss, Inc.
Keywords:amphiregulin  DNA arrays  p8  tumor xenografts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号