首页 | 本学科首页   官方微博 | 高级检索  
     


Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells
Authors:Tanaka Tetsuhiro  Nangaku Masaomi  Miyata Toshio  Inagi Reiko  Ohse Takamoto  Ingelfinger Julie R  Fujita Toshiro
Affiliation:Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan. mnangaku-tky@umin.ac.jp
Abstract:In hypoxia, ATP depletion causes cellular Ca(2+) increase, mitochondrial injury, and apoptosis in renal tubular cells. However, the molecular basis of these observations is incompletely delineated. IRPTC, a rat renal proximal tubular cell line, was treated with antimycin A, and disturbances in cytoplasmic calcium ([Ca(2+)]c) and mitochondrial calcium ion concentration ([Ca(2+)]m), dissipation of mitochondrial membrane potential (DeltaPsi(m)), cytochrome c release, and resultant apoptosis were examined. Pharmacologic targeting of L-type Ca(2+) channels in vitro and in vivo was used to clarify the involvement of voltage-dependent Ca(2+) channels during this process. In vitro studies indicated that ATP depletion-induced apoptosis was preceded by increased [Ca(2+)]c and [Ca(2+)]m before activation of mitochondrial signaling. Antagonizing L-type Ca(2+) channels offset these findings, suggesting [Ca(2+)]c and [Ca(2+)]m involvement. Azelnidipine administration ameliorated cellular and mitochondrial Ca(2+) accumulation, mitochondrial permeability transition, cytochrome c release, caspase-9 activation, and resultant apoptosis (15.8 +/- 0.8% versus 8.9 +/- 0.7%; P < 0.01). Similar effects of azelnidipine were substantiated in an in vivo ischemia/reperfusion injury model. There were fewer terminal-deoxynucleotidyl transferase mediated dUTP nick-end labeling-positive cells in the azelnidipine-treated group (0.322 +/- 0.038/tubule) as compared with the vehicle-treated group (0.450 +/- 0.041; P < 0.05), although the antiapoptotic effect was smaller in vivo than in vitro, partly as a result of distinct levels of Bax expression. It is proposed that voltage-dependent Ca(2+) channels are involved in cellular and mitochondrial accumulation of Ca(2+) subsequent to ATP depletion and play an important role in regulating mitochondrial permeability transition, cytochrome c release, caspase activation, and apoptosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号