首页 | 本学科首页   官方微博 | 高级检索  
     


Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.
Authors:K Bagley   G Dollinger   L Eisenstein   A K Singh     L Zimányi
Abstract:Fourier transform infrared difference spectroscopy has been used to obtain the vibrational modes in the chromophore and apoprotein that change in intensity or position between light-adapted bacteriorhodopsin and the K and M intermediates in its photocycle and between dark-adapted and light-adapted bacteriorhodopsin. Our infrared measurements provide independent verification of resonance Raman results that in light-adapted bacteriorhodopsin the protein-chromophore linkage is a protonated Schiff base and in the M state the Schiff base is unprotonated. Although we cannot unambiguously identify the Schiff base stretching frequency in the K state, the most likely interpretation of deuterium shifts of the chromophore hydrogen out-of-plane vibrations is that the Schiff base in K is protonated. The intensity of the hydrogen out-of-plane vibrations in the K state compared with the intensities of those in light-adapted and dark-adapted bacteriorhodopsin shows that the conformation of the chromophore in K is considerably distorted. In addition, we find evidence that the conformation of the protein changes during the photocycle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号