首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mechanism of inhibition of the sodium current by bepridil in guinea-pig isolated ventricular cells.
Authors:T Nawada  Y Tanaka  I Hisatome  N Sasaki  A Ohtahara  H Kotake  H Mashiba  and R Sato
Institution:First Department of Internal Medicine, Tottori University, Yonago, Japan.
Abstract:1. Effects of bepridil, a sodium-, calcium-, and potassium-antagonistic agent, on the Na+ current were studied by the whole cell voltage clamp technique (tip resistance = 0.5 MOhm, Na]i and Na]o 10 mmol l-1 at 20 degrees C). 2. Bepridil produced tonic block (Kdrest = 295.44 mumol l-1, Kdi = 1.41 mumol l-1; n = 4). 3. Bepridil (100 mumol l-1) shifted the inactivation curve in the hyperpolarization direction by 13.4 +/- 2.7 mV (n = 4) without change in the slope factor. 4. In the presence of 50 mumol l-1 bepridil, bepridil showed use-dependent block at 2 Hz, whereas changes in pulse duration did not significantly effect this use-dependent block (81% +/- 2% at 10 ms, 84% +/- 3% at 30 ms, 86% +/- 3% at 100 ms; n = 4). 5. After removal of fast inactivation of the Na+ current by 3 mmol l-1 tosylchloramide sodium, bepridil (50 mumol l-1) still showed use-dependent block which was independent of the holding potential. 6. The recovery time constant from the bepridil-induced use-dependent block was 0.48 s at holding potential of -100 mV and 0.51 s at holding potential of -140 mV. 7. These results indicate that bepridil could bind to the receptor in the sodium channel through the hydrophobic and the hydrophilic pathway and leave the receptor through the hydrophobic pathway in the lipid bilayer. The binding and dissociation kinetics of this drug were shown to be fast, and the accumulation of the drug in the sodium channel appeared to be small.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号