首页 | 本学科首页   官方微博 | 高级检索  
检索        


Model of reentrant ventricular tachycardia based on infarct border zone geometry predicts reentrant circuit features as determined by activation mapping
Authors:Edward J Ciaccio PhD  Hiroshi Ashikaga MD  PhD  Riyaz A Kaba MD  Daniel Cervantes MD  Bruce Hopenfeld PhD  Andrew L Wit PhD  Nicholas S Peters MD  PhD  Elliot R McVeigh PhD  Hasan Garan MD  James Coromilas MD
Institution:Department of Pharmacology, Columbia University, New York, New York, USA.
Abstract:BACKGROUND: Infarct border zone (IBZ) geometry likely affects inducibility and characteristics of postinfarction reentrant ventricular tachycardia, but the connection has not been established. OBJECTIVE: The purpose of this study was to determine characteristics of postinfarction ventricular tachycardia in the IBZ. METHODS: A geometric model describing the relationship between IBZ geometry and wavefront propagation in reentrant circuits was developed. Based on the formulation, slow conduction and block were expected to coincide with areas where IBZ thickness (T) is minimal and the local spatial gradient in thickness (DeltaT) is maximal, so that the degree of wavefront curvature rho proportional, variant DeltaT/T is maximal. Regions of fastest conduction velocity were predicted to coincide with areas of minimum DeltaT. In seven arrhythmogenic postinfarction canine heart experiments, tachycardia was induced by programmed stimulation, and activation maps were constructed from multichannel recordings. IBZ thickness was measured in excised hearts from histologic analysis or magnetic resonance imaging. Reentrant circuit properties were predicted from IBZ geometry and compared with ventricular activation maps after tachycardia induction. RESULTS: Mean IBZ thickness was 231 +/- 140 microm at the reentry isthmus and 1440 +/- 770 microm in the outer pathway (P <0.001). Mean curvature rho was 1.63 +/- 0.45 mm(-1) at functional block line locations, 0.71 +/- 0.18 mm(-1) at isthmus entrance-exit points, and 0.33 +/- 0.13 mm(-1) in the outer reentrant circuit pathway. The mean conduction velocity about the circuit during reentrant tachycardia was 0.32 +/- 0.04 mm/ms at entrance-exit points, 0.42 +/- 0.13 mm/ms for the entire outer pathway, and 0.64 +/- 0.16 mm/ms at outer pathway regions with minimum DeltaT. Model sensitivity and specificity to detect isthmus location was 75.0% and 97.2%. CONCLUSIONS: Reentrant circuit features as determined by activation mapping can be predicted on the basis of IBZ geometrical relationships.
Keywords:Arrhythmia  Border zone  Conduction velocity  Infarction  Mapping  MRI  Propagation  Ventricular tachycardia
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号