首页 | 本学科首页   官方微博 | 高级检索  
     


Validation of an axially distributed model for quantification of myocardial blood flow using 13N-ammonia PET
Authors:Adam M. Alessio PhD  James B. Bassingthwaighte MD   PhD  Robb Glenny MD  James H. Caldwell MD
Affiliation:1. Department of Radiology, University of Washington, 4000 15th Ave NE, P.O. Box 357987, Seattle, WA, 98195-6004, USA
2. Department of Bioengineering, University of Washington, Seattle, WA, USA
3. Department of Medicine, University of Washington, Seattle, WA, USA
4. Departments of Physiology and Biophysics, University of Washington, Seattle, WA, USA
Abstract:

Background

Estimation of myocardial blood flow (MBF) with cardiac PET is often performed with conventional compartmental models. In this study, we developed and evaluated a physiologically and anatomically realistic axially distributed model. Unlike compartmental models, this axially distributed approach models both the temporal and the spatial gradients in uptake and retention along the capillary.

Methods

We validated PET-derived flow estimates with microsphere studies in 19 (9 rest, 10 stress) studies in five dogs. The radiotracer, 13N-ammonia, was injected intravenously while microspheres were administered into the left atrium. A regional reduction in hyperemic flow was forced by an external occluder in five of the stress studies. The flow estimates from the axially distributed model were compared with estimates from conventional compartmental models.

Results

The mean difference between microspheres and the axially distributed blood flow estimates in each of the 17 segments was 0.03 mL/g/minute (95% CI [?0.05, 0.11]). The blood flow estimates were highly correlated with each regional microsphere value for the axially distributed model (y = 0.98x + 0.06 mL/g/minute; r = 0.74; P < .001), for the two-compartment (y = 0.64x + 0.34; r = 0.74; P < .001), and for three-compartment model (y = 0.69x + 0.54; r = 0.74; P < .001). The variance of the error of the estimates is higher with the axially distributed model than the compartmental models (1.7 [1.3, 2.1] times higher).

Conclusion

The proposed axially distributed model provided accurate regional estimates of MBF. The axially distributed model estimated blood flow with more accuracy, but less precision, than the evaluated compartmental models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号