首页 | 本学科首页   官方微博 | 高级检索  
检索        


Functional association of phosphoinositide‐3‐kinase with platelet glycoprotein Ibα, the major ligand‐binding subunit of the glycoprotein Ib–IX–V complex
Authors:F‐T MU  S L CRANMER  R K ANDREWS  M C BERNDT
Institution:1. Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia;2. College of Medicine and Health, University College Cork, Western Road, Cork, Ireland
Abstract:Summary. Background: The adhesion receptor glycoprotein (GP)Ib–IX–V, which binds von Willebrand factor (VWF) and other ligands, initiates platelet activation and thrombus formation at arterial shear rates, and may control other vascular processes, such as coagulation, inflammation, and platelet‐mediated tumor metastasis. The cytoplasmic C‐terminal domain of the ligand‐binding GPIbα subunit contains binding sites for filamin (residues 561–572, critically Phe568/Trp570), 14‐3‐3ζ (involving phosphorylation sites Ser587/590 and Ser609), and the phosphoinositide‐3‐kinase (PI3‐kinase) regulatory subunit, p85. Objectives: We previously showed that, as compared with wild‐type receptor, deleting the contiguous sequence 580–590 or 591–610, but not upstream sequences, of GPIbα expressed as a GPIb–IX complex in Chinese hamster ovary cells inhibited VWF‐dependent Akt phosphorylation, which is used as a read‐out for PI3‐kinase activity. Pulldown experiments using glutathione‐S‐transferase (GST)–p85 or GST–14‐3‐3ζ constructs, and competitive inhibitors of 14‐3‐3ζ binding, suggested an independent association of 14‐3‐3ζ and PI3‐kinase with GPIbα. The objective of this study was to analyze a further panel of GPIbα deletion mutations within residues 580–610. Results: We identified a novel deletion mutant, Δ591–595, that uniquely disrupts 14‐3‐3ζ binding but retains the functional p85/PI3‐kinase association. Deletion of other sequences within the 580–610 region were less discriminatory, and either partially affected p85/PI3‐kinase and 14‐3‐3ζ binding (Δ580–585, Δ586–590, Δ596–600, Δ601–605), or strongly inhibited binding of both proteins (Δ606–610). Conclusions: Together, these findings have significant implications for interpreting the functional role of p85 and/or 14‐3‐3ζ in GPIb‐dependent signaling or platelet functional studies involving truncation of the C‐terminal residues in cell‐based assays and mouse models. The Δ591–595 mutation provides another strategy for determining the function of GPIbα‐associated 14‐3‐3ζ by selective disruption of 14‐3‐3ζ but not p85/PI3‐kinase binding.
Keywords:14‐3‐3ζ    GPIb–  IX–  V  phosphoinositide‐3‐kinase  platelets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号