Abstract: | Dendritic cells (DC) are potent antigen-presenting cells (APC). However, the molecular basis underlying this activity remains incompletely understood. To address this question, we generated murine monoclonal antibodies (mAb) against human peripheral blood-derived DC. One such antibody, designated IT209, stained differentiated DC and adherent monocytes, but failed to stain freshly isolated peripheral blood mononuclear cells (PBMC). The antigen recognized by IT209 was identified as B70 (B7-2; also recently identified as CD86). Using this mAb we studied the role of B70 in CD4+ T-cell activation by DC in vitro. IT209 partly inhibited the proliferative response of CD4+ T cells to allogeneic DC and to recall antigens, such as tetanus toxoid (TT) and purified protein derivative (PPD) of tuberculin, presented by autologous DC. More importantly, the mAb had a potent inhibitory effect on the primary response of CD4+ T cells to autologous DC pulsed with human immunodeficiency virus (HIV) gp160 or keyhole limpet haemocyanin (KLH). Adherent monocytes, despite their expression of B70, failed to induce T-cell responses to these antigens. IT209-mediated inhibition of CD4+ T-cell responses was equivalent to that produced by anti-CD25 mAb, whereas an anti-CD80 mAb was only marginally inhibitory and did not augment the effect of IT209. These findings indicate that the B70 antigen plays an important role in DC-dependent CD4+ T-cell activation, particularly in the induction of primary CD4+ T-cell responses to soluble antigens. However, since activated monocytes, despite their expression of B70, failed to prime naive T cells to these antigens, our results suggest that additional molecules contribute to the functions of DC in CD4+ T-cell activation. |