首页 | 本学科首页   官方微博 | 高级检索  
检索        


Activation of human platelet-rich plasmas: effect on growth factors release, cell division and in vivo bone formation
Authors:Roussy Yanik  Bertrand Duchesne Marie-Pierre  Gagnon Guy
Institution:Faculté de Médecine dentaire, Quebec, QC, Canada.
Abstract:OBJECTIVES: Aims of this controlled study were to determine the effects of activated human platelet-rich plasmas (PRPs) on early and mature bone formation in vivo, and to characterize the effect of PRP activation on growth factors release and endothelial cell division in vitro. MATERIAL AND METHODS: PRPs were prepared from four volunteers with the platelet concentrate collector system (PCCS) system and activated with three concentrations of calcium and thrombin. Platelet-derived growth factor (PDGF)-BB, vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-beta) and interleukin-1beta (IL-1beta) levels released in supernatants were measured by ELISA, at time 0, 1h, 24h and 6 days following PRP activation. Mitogenic potential of PRP supernatants were tested on endothelial cells in vitro, and the effects of activated human PRPs on bone formation in vivo were measured in athymic rats by micro-CT analyses. RESULTS: Activation of PRPs with calcium and thrombin triggered an immediate release of VEGF, PDGF-BB and TGF-beta and a delayed release of IL-1beta in PRP supernatants. Higher endothelial cell division was observed with supernatants from activated PRPs than from non-activated PRPs. Positive correlations were observed between VEGF levels and endothelial cell division and bone formation. A negative correlation was also found between PDGF-BB concentration and bone formation. However, early and mature bone formations with activated PRPs did not significantly differ from the ones obtained in the control group. CONCLUSIONS: Activation of PRPs with calcium and thrombin regulates growth factors release and endothelial cell division in vitro. However, activated PRPs does not improve the early or mature bone formations in vivo in this athymic rat model.
Keywords:animals  bone formation  endothelial cells  growth factors  micro-CT  platelet-rich plasmas
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号