首页 | 本学科首页   官方微博 | 高级检索  
检索        


Evidence for the inhibitory neurotransmitter gamma-aminobutyric acid in aspiny and sparsely spiny nonpyramidal neurons of the turtle dorsal cortex
Authors:M G Blanton  J M Shen  A R Kriegstein
Abstract:In order to learn more about the anatomical substrate for gamma-aminobutyric acid (GABA)-mediated inhibition in cortical structures, the intrinsic neuronal organization of turtle dorsal cortex was studied by using Golgi impregnation, immunohistochemical localization of GABA and its synthetic enzyme glutamic acid decarboxylase (GAD), and histochemical localization of the presynaptic GABA-degrading enzyme GABA-transaminase (GABA-T). GABAergic markers are found in neurons identical in morphology and distribution to Golgi-impregnated aspiny and sparsely spiny nonpyramidal neurons with locally arborizing axons and appear to label most if not all of the nonpyramidal neurons. In addition, the GABAergic markers are found in punctate structures in a distribution characteristic of presumed inhibitory terminals. The spine-laden pyramidal neurons, the principal projecting cell type in the dorsal cortex, are devoid of labelling for GABAergic markers but are surrounded by presumed GABAergic terminals. The data complement previous physiological and ultrastructural studies that implicate aspiny and sparsely spiny nonpyramidal neurons as mediators of intrinsic inhibition of pyramidal neurons in turtle cortex. The results also suggest similarities in the functional organization of intrinsic inhibitory elements in turtle and mammalian cortex.
Keywords:glutamic acid decarboxylase  GABA-transaminase  Golgi impregnation  immunohistochemistry  cortical inhibition  nonpyramidal neurons
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号