首页 | 本学科首页   官方微博 | 高级检索  
检索        


Fully autonomous preload-sensitive control of implantable rotary blood pumps
Authors:Arndt Andreas  Nüsser Peter  Lampe Bernhard
Institution:Berlin Heart-R&D, Berlin, Germany. arndt@berlinheart.de
Abstract:A pulsatility-based control algorithm with a self-adapting pulsatility reference value is proposed for an implantable rotary blood pump and is to be tested in computer simulations. The only input signal is the pressure difference across the pump, which is deduced from measurements of the pump's magnetic bearing. A pulsatility index (PI) is calculated as the mean absolute deviation from the mean pressure difference. As a second characteristic, the gradient of the PI with respect to the pump speed is derived. This pulsatility gradient (GPI) is used as the controlled variable to adjust the operating point of the pump when physiological variables such as the systemic arterial pressure, left ventricular contractility, or heart rate change. Depending on the selected mode of operation, the controller is either a linear controller or an extremum-seeking controller. A supervisory mechanism monitors the state of the system and projects the system into the region of convergence when necessary. The controller of the GPI continuously adjusts the reference value for PI. An underlying robust linear controller regulates the PI to the reference value in order to take into account changes in pulmonary venous return. As a means of reacting to sudden changes in the venous return, a suction detection mechanism was included. The control system is robustly stable within a wide range of physiological variables. All the clinician needs to do is to select between the two operating modes. No other adjustments are required. The algorithm showed promising results which encourage further testing in vitro and in vivo.
Keywords:Rotary blood pump  Left ventricular assist device  Pulsatility  Robust control  Suction detection  System identification  Extremum seeking control
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号