首页 | 本学科首页   官方微博 | 高级检索  
     


Amino acids are not all initially attached to the same position on transfer RNA molecules.
Authors:T H Fraser and A Rich
Abstract:Escherichia coli tRNA has been modified by replacement of the 3'-terminal AMP with either 3'-amino-3'-deoxy AMP of 2'-amino-2'-deoxy AMP. These tRNA analogs have enabled us to determine the initial site of enzyme-catalyzed aminoacylation of different tRNAs by the formation of aminoacyl-tRNA molecules in which the amino acid is linked to the 3'-terminal ribose through a stable amide bond. The tRNA species specific for glutamic acid, glutamine, leucine, phenylalanine, tyrosine, and valine are all aminoacylated on the 2'-hydroxyl group. The tRNA species specific for alanine, asparagine, aspartic acid, glycine, histidine, lysine, and threonine are aminoacylated on the 3'-hydroxyl group. The amino acids arginine, isoleucine, methionine, proline, serine, and tryptophan form stable amide bonds with both amino tRNA analogs. This might suggest that the synthetases for these amino acids can acylate both the 2'- and 3'-hydroxyl groups, but it is more likely that these enzymes can acylate both hydroxyl and amino groups at either the 2' or 3'-position of the tRNA. These results clearly illustrate a fundamental heterogeneity which is apparent in the mechanism of action of aminoacyl-tRNA synthetases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号