首页 | 本学科首页   官方微博 | 高级检索  
     


Ascending reticular activating system in the rat: A 2-deoxyglucose study
Authors:Francisco Gonzalez-Lima  Henning Scheich
Abstract:The autoradiographic [14C]2-deoxyglucose (2-DG) method was used to map ascending pathways which are influenced by arousing electrical stimulation of the midbrain reticular formation (RET) in alert rats. The major finding was that RET stimulation produces selective patterns of metabolic activation and suppression in discrete brain regions. The regions activated were limited to specific intralaminar, medial and anterior thalamic nuclei, and to the entire auditory system. Conversely, a large suppression of 2-DG uptake was observed in most of the cerebral cortex, limbic and extrapyramidal structures, whereas at the same time some brain regions were left unaffected. Striking similarities were found between the functional pathways affected differentially by RET stimulation and well-defined cholinergic pathways which originate in the midbrain tegmentum. Structures which showed metabolic activation are part of the dorsal cholinergic pathway, whereas the regions suppressed are part of the ventral cholinergic pathway and its higher-order projections. The results support the conclusion that cholinergic pathways represent the thalamic and extrathalamic divisions of the reticular activating system. Our observations provide the first anatomical demonstration that RET stimulation has widespread and differential effects on cerebral metabolism. They also support the concept that arousing electrocortical desynchronization involves reticular activation of thalamocortical neurons, which in turn have widespread suppressive influences on cortical metabolism.
Keywords:ascending reticular activating system   2-deoxyglucose   arousal   rat
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号