首页 | 本学科首页   官方微博 | 高级检索  
     


NGF and NT-3 exert differential effects on the expression of neuropeptides in the suprachiasmatic nucleus of rats withdrawn from ethanol treatment
Authors:Paula-Barbosa Manuel M  Pereira Pedro A  Cadete-Leite António  Dulce Madeira M
Affiliation:Department of Anatomy, Porto Medical School, Alameda Hernani Monteiro, 4200-319, Porto, Portugal. mmpb@med.up.pt
Abstract:Some neurotrophins have the capability of enhancing neuropeptide expression in several regions of the brain. It was also recently shown that NGF, infused over 1 month, offsets the decreased synthesis and expression of vasopressin (VP) and vasoactive intestinal polypeptide (VIP) in the suprachiasmatic nucleus (SCN) of rats submitted to chronic ethanol treatment and withdrawal. In the present study we examined the effectiveness of neutrotrophin-3 (NT-3) in promoting such effects, given that SCN neurons express both the high and the low affinity receptors for this neurotrophin. NT-3 was intraventricularly infused during 10 days to rats withdrawn from prolonged ethanol treatment. The total number, and the mean somatic volume, of VP- and VIP-immunoreactive neurons was compared with the estimates obtained from control rats and withdrawn rats treated with either NGF or cerebrospinal fluid during the same period. The infusion of cerebrospinal fluid and of NT-3 did not prevent the reduction in the number of peptide-producing neurons induced by withdrawal from ethanol treatment. Conversely, NGF infusion increased their number to control levels and led to neuronal hypertrophy. Our results show that, unlike NGF, NT-3 does not display the capacity of enhancing neuropeptide expression in the SCN. Because SCN neurons express the low affinity p75(NTR), which is equally activated by both neurotrophins, our results additionally indicate that the effects of NGF upon SCN neurons are not receptor-mediated. Taken together, our data suggest that indirect mechanisms, rather than direct neutrophin signaling, are likely to mediate the trophic effects exerted by NGF upon SCN neurons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号