首页 | 本学科首页   官方微博 | 高级检索  
     


Application of Phi29 DNA polymerase in identification and full-length clone inoculation of tomato yellow leaf curl Thailand virus and tobacco leaf curl Thailand virus
Authors:D. Knierim  E. Maiss
Affiliation:(1) Institute of Plant Diseases and Plant Protection, Leibniz University Hannover, Hannover, Germany
Abstract:Summary. Tomato plants grown in greenhouses in Thailand developed typical symptoms of a tomato yellow leaf curl Thailand virus (TYLCTHV) infection. After confirmation by ELISA, a Phi29 DNA polymerase approach was chosen for further molecular analysis of TYLCTHV. Total DNA purified from infected tomato leaves was subjected to rolling-circle amplification (RCA) of DNA-A and DNA-B of TYLCVTHV. In addition, a new monopartite geminivirus with a putative recombinant background was identified by RCA and tentatively named tobacco leaf curl Thailand virus (TbLCTHV). To confirm the composition of both geminiviruses, full-length clones were established and used for inoculation of Nicotiana benthamiana by particle bombardment or agroinfection. When TYLCTHV DNA-A and DNA-B were applied together by particle bombardment or agroinfection, severe stunting, yellowing, and leaf curling were observed. Whereas TYLCTHV DNA-A and TbLCTHV revealed no infection after'particle bombardment, similar symptoms in N. benthamiana, like leaf upward curling and yellowing were observed following agroinfection. DNA components of TYLCTHV DNA-A and DNA-B were excised from their respective plasmids, ligated, and amplified by Phi29 DNA polymerase. The ability of viral concatamere inoculation was evaluated in particle co-bombardment experiments on N. benthamiana. Thus, particle bombardment of RCA-derived multimeric products proved to be at least as effective as inoculation with a partial repeat construct and tenfold as effective as inoculation with excised unit-lengths of DNA-A and DNA-B of TYLCVTHV when using each DNA component in an amount of 5 ng.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号