首页 | 本学科首页   官方微博 | 高级检索  
     


Tableting and tablet properties of alginates: Characterisation and potential for Soft Tableting
Authors:Wolfgang Schmid
Affiliation:Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Abstract:The aim of the study was to evaluate the suitability of alginates for Soft Tableting. For this purpose the compaction properties of alginates, varying in molecular weight, guluronic acid/mannuronic acid ratio and salt, were investigated and compared to MCC. Based on the mechanical properties, the suitability of the tested excipients for Soft Tableting was predicted. In order to test the prediction the tested materials were used to tablet enteric coated pellets, which served as a pressure sensitive material. The tableting behaviour was analysed by the 3-D modeling technique. The tablet properties were analysed by determining the elastic recovery and the compactibility. Alginates in general deformed elastically. The compression behaviour depended on the chemical composition of the alginates with sodium alginates being more elastic than potassium alginates. Tablets containing alginates with low guluronic acid content exhibited higher elasticity than tablets with alginates having a low mannuronic acid content. The plasticity of potassium alginates was higher than for sodium alginates. However, the plasticity of all tested alginates was lower than the plasticity of MCC. The compactibility of the tested alginates was sufficient. The proposed prediction, which states that tableting excipients with higher elasticity are more suitable for tableting sensitive materials than plastic excipients, was valid for the tested materials. The elastic alginates inflicted less damage on the pellets than the plastic MCC. Thus, all alginates were more appropriate for tableting pressure sensitive materials than MCC.
Keywords:Compression   Compaction   Alginates   Soft Tableting   3-D model   Tablet   Enteric coating   Pellets
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号