首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles
Authors:George Mattheolabakis  Sylva Haralambous  Konstantinos Avgoustakis
Affiliation:a Department of Pharmacy, University of Patras, Rio, Greece
b Transgenic Technology Unit, Hellenic Pasteur Institute, Athens, Greece
c Regulon A.E., Athens, Greece
Abstract:The tolerance of BALB/c mice to different doses of blank and cisplatin-loaded PLGA-mPEG nanoparticles and the in vivo anticancer activity of these nanoparticles on SCID mice xenografted with colorectal adenocarcinoma HT 29 cells were investigated. Nanoparticles with an average size of 150-160 nm and approximately 2% w/w cisplatin content were prepared by a modified emulsification and solvent evaporation method. Normal BALB/c mice tolerated three weekly intravenous injections of a relatively high dose of blank PLGA-mPEG nanoparticles (500 mg/kg, equivalent to about 10 mg nanoparticles/mouse) and three weekly intravenous injections of a high dose of nanoparticle-entrapped cisplatin (10 mg/kg). Also, histopathology examination indicated that there were no differences in the kidneys or spleens from animals treated with cisplatin-loaded nanoparticles or blank nanoparticles compared to the untreated control group. A moderate granulation of protoplasm of hepatic cells was observed in the livers from mice treated with cisplatin-loaded nanoparticles and blank nanoparticles, however, both the hepatic lobe and the portal hepatis maintained their normal architecture. The cisplatin-loaded PLGA-mPEG nanoparticles appeared to be effective at delaying tumor growth in HT 29 tumor-bearing SCID mice. The group of mice treated with cisplatin-loaded nanoparticles exhibited higher survival rate compared to the free cisplatin group. The results justify further evaluation of the in vivo antitumor efficacy of the PLGA-mPEG/cisplatin nanoparticles.
Keywords:Poly(lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanoparticles   PLGA-mPEG   Cisplatin   Cytotoxicity   HT 29 cells   Anticancer activity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号