首页 | 本学科首页   官方微博 | 高级检索  
检索        


Ca2+ channel inhibition in a rat osteoblast-like cell line, UMR 106, by a new dihydropyridine derivative, S11568.
Authors:P Morain  J L Peglion  E Giesen-Crouse
Institution:Institut de Recherches Servier, Suresnes, France.
Abstract:UMR 106 rat osteogenic sarcoma cells were studied with the whole cell patch clamp technique to investigate the presence of voltage-gated inward currents. In barium (Ba2+)-containing medium, depolarizing jumps revealed both transient (T-type) and sustained (L-type) Ba2+ currents. The L-type component was dihydropyridine-sensitive: the agonist Bay K 8644 increased the amplitude of the L-type Ba2+ current. A new dihydropyridine calcium channel blocker, S 11568 ((+/-)-2(2-2-(aminoethoxy)ethoxyl]methyl)4-(2',3'- dichlorophenyl)3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4- dihydropyridine, and its enantiomers, S 12967 ((+)-S 11568) and S 12968 ((-)-S 11568), inhibited the L-type Ba2+ current. IC50 values at a holding potential (VH) of -50 mV were 90 nM for S 11568, 800 nM for S 12967 and 45 nM for S 12968. At VH = -80 mV, S 12968 was less potent (IC50 near 500 nM). In contrast, S 12968 was without appreciable effect on the T-type component of the inward current through Ca2+ channels. Our results indicate that UMR 106 cells express both T-type and L-type Ca2+ channels and could be used to study the modulation by Ca2+ channel blocking agents, such as S 12968, of the hormonal regulation of Ca2+ fluxes across the osteoblast membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号