首页 | 本学科首页   官方微博 | 高级检索  
     


Presynaptic nitric oxide/cGMP facilitates glutamate release via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus
Authors:Neitz Angela  Mergia Evanthia  Eysel Ulf T  Koesling Doris  Mittmann Thomas
Affiliation:Department of Neurophysiology, Medical School, Ruhr-University Bochum, Germany.
Abstract:In hippocampal neurons, synaptic transmission is affected by a variety of modulators, including nitric oxide (NO), which was proposed as a retrograde messenger as long as two decades ago. NO signals via two NO-sensitive guanylyl cyclases (NO-GCs) (NO-GC1 and NO-GC2) and the subsequent increase in cGMP. Lack of long-term potentiation in mice deficient in either one of the two NO-GCs demonstrates the involvement of both NO-GCs in synaptic transmission. However, the physiological consequences of NO/cGMP and the cellular mechanisms involved are unknown. Here, we analyzed glutamatergic synaptic transmission, most likely reflecting glutamate release, in the hippocampal CA1 region of NO-GC knockout mice by single-cell recording, and found glutamate release to be reduced under basal and stimulated conditions in the NO-GC1 knockout mice, but restorable to wild-type-like levels with a cGMP analog. Conversely, an inhibitor of NO/cGMP signaling, ODQ, reduced glutamate release in wild-type mice to knockout-like levels; thus, we conclude that presynaptic cGMP formed by NO-GC1 facilitates glutamate release. In this pathway, NO is supplied by endothelial NO synthase. In search of a cGMP target, we found that two mechanistically distinct blockers of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ZD7288 and DK-AH269) abolished the cGMP-induced increase in glutamate release, suggesting that cGMP either directly or indirectly signals via HCN channels. In summary, we unravel a presynaptic role of NO/cGMP most likely in glutamate release and propose that HCN channels act as effectors for cGMP.
Keywords:acute hippocampal slices  guanylyl cyclase  knockout mice  NO synthase
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号